

$\label{eq:presentation} PRESENTATION COLLEGE CHAGUANAS \\ CAPE MATHEMATICS UNIT I - Practice Test Module 1$

Form: 6S1/N1/B1

ACADEMIC YEAR: 2013/14 Time: 1 hour

INSTRUCTIONS TO CANDIDATES

- Answer ALL questions
- Show all working clearly. Marks will be given for the correct steps in the solutions.
- The use of silent electronic calculators(non programmable) is allowed.
- Attempt each question on a new page

_ . . _ . . _ . . _ . . _ . . _ . . _ . . _

- **1.** Let p and q be two propositions. Construct truth tables for the statements
 - a) (i) $p \Lambda q$ [1mk] (ii) $p \Lambda (p \rightarrow q)$ [3mks]
 - b) What is meant by logical equivalence? [1mk]
 - c) Prove by Mathematical Induction $\sum_{r=1}^{n} 4r (r-1) = \frac{4n (n+1) (n-1)}{3}$ [7mks]
- **2.** a) The polynomial f(x) is defined by $10x^3 + x^2 8x 3$.

(i) U	Use the Factor Theorem to show that $(x - 1)$ is a factor of $f(x)$	[2mks]
-------	---	--------

(ii) Find the remaining factors of f(x). [4mks]

(iii) Hence solve,
$$(10x^3 + x^2 - 8x - 3)(x^2 - 16) = 0$$
 [4mks]

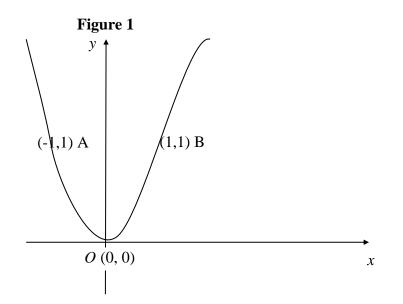


Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the points (-1, 1) and (1, 1) and touches the *x*-axis at the point (0, 0). On separate diagrams, sketch the curve with equation

(a)
$$y = f(x+1)$$
 (b) $y = 2f(x)$ (c) $y = f\left(\frac{1}{2}x\right)$ [6mks]

On each diagram show clearly the coordinates of any points at which the curve meets the axes.

- d) The function, *f* and *g*, are defined on **R** by f: $x \rightarrow 6x + 10$ and g: $x \rightarrow x 7$
 - (i) Show that f is one to one. [2mks]
 - (ii) Find f[g(x)] and g[f(x)] [4mks]
 - (iii) Determine the value(s) of x for which f(g(2x+1)) = f(3x-2) + 4 [4mks]

4.

(a)(i) Rationalise the denominator of
$$\frac{(2-\sqrt{x})}{(2+3\sqrt{x})}$$
 [3mks]

(ii) Hence show that
$$\frac{(2-\sqrt{x})}{(2+3\sqrt{x})}(4-9x) = 4 - 8\sqrt{x} + 3x$$
 [2mks]

(b) Solve the following simultaneous equations.

$$log (x-1) + 2 log y = 2 log 3log x + log y = log 6$$
 [6mks]

(c)The cubic equation $2x^3 - 3x^2 + 4x + 6 = 0$ has roots α, β and γ . Find the new equation whose roots are $\frac{2}{\alpha}, \frac{2}{\beta}$ and $\frac{2}{\gamma}$ [6mks]

(d) Solve the inequality
$$\frac{4x+1}{3x-2} < 0$$
 [5mks]